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Abstract. The article describes an active learning strategy to solve the large
quadratic programming (QP) problem of support vector machine (SVM) design
in data mining applications. The learning strategy is motivated by the statistical
query model. While most existing methods of active SVM learning query for points
based on their proximity to the current separating hyperplane, the proposed method
queries for a set of points according to a distribution as determined by the current
separating hyperplane and a newly defined concept of an adaptive confidence factor.
This enables the algorithm to have more robust and efficient learning capabilities.
The confidence factor is estimated from local information using the k nearest neigh-
bor principle. Effectiveness of the method is demonstrated on real life data sets both
in terms of generalization performance and training time.

Key words: Data mining, query learning, incremental learning, statistical
queries

1 Introduction

The support vector machine (SVM) [17] has been successful as a high perfor-
mance classifier in several domains including pattern recognition, data mining
and bioinformatics. It has strong theoretical foundations and good general-
ization capability. A limitation of the SVM design algorithm, particularly for
large data sets, is the need to solve a quadratic programming (QP) problem
involving a dense n × n matrix, where n is the number of points in the data
set. Since QP routines have high complexity, SVM design requires huge mem-
ory and computational time for large data applications. Several approaches
exist for circumventing the above shortcomings. These include simpler opti-
mization criterion for SVM design, e.g., the linear SVM and the kernel ada-
tron, specialized QP algorithms like the cojugate gradient method, decom-
position techniques which break down the large QP problem into a series of
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smaller QP sub-problems, sequential minimal optimization (SMO) algorithm
and its various extensions, Nystrom approximations [18] and greedy Bayesian
methods [15]. Many of these approaches are discussed in [13]. A simple method
to solve the SVM QP problem has been described by Vapnik, which is known
as “chunking” [2]. The chunking algorithm uses the fact that the solution of
the SVM problem remains the same if one removes the points that corre-
spond to zero Lagrange multipliers of the QP problem (the non-SV points).
The large QP problem can thus be broken down into a series of smaller QP
problems, whose ultimate goal is to identify all of the non-zero Lagrange
multipliers (SVs) while discarding the zero Lagrange multipliers (non-SVs).
At every step, chunking solves a QP problem that consists of the non-zero
Lagrange multiplier points from the previous step, and a chunk of p other
points. At the final step, the entire set of non-zero Lagrange multipliers has
been identified; thereby solving the large QP problem. Several variations of
chunking algorithm exist depending upon the method of forming the chunks
[5]. Chunking greatly reduces the training time compared to batch learning of
SVMs. However, it may not handle large-scale training problems due to slow
convergence of the chunking steps when p new points are chosen randomly.

Recently, active learning has become a popular paradigm for reducing
the sample complexity of large scale learning tasks [4, 7]. It is also useful
in situations where unlabeled data is plentiful but labeling is expensive. In
active learning, instead of learning from “random samples’, the learner has
the ability to select its own training data. This is done iteratively, and the
output of a step is used to select the examples for the next step. In the context
of support vector machine active learning can be used to speed up chunking
algorithms. In [3], a query learning strategy for large margin classifiers is
presented which iteratively requests the label of the data point closest to
the current separating hyperplane. This accelerates the learning drastically
compared to random sampling. An active learning strategy based on version
space splitting is presented in [16]. The algorithm attempts to select the points
which split the current version space into two halves having equal volumes at
each step, as they are likely to be the actual support vectors. Three heuristics
for approximating the above criterion are described, the simplest among them
selects the point closest to the current hyperplane as in [3]. A greedy optimal
strategy for active SV learning is described in [12]. Here, logistic regression
is used to compute the class probabilities, which is further used to estimate
the expected error after adding an example. The example that minimizes this
error is selected as a candidate SV. Note that the method was developed
only for querying single point, but the result reported in [12] used batches of
different sizes, in addition to single point.

Although most of these active learning strategies query only for a single
point at each step, several studies have noted that the gain in computational
time can be obtained by querying multiple instances at a time. This motivates
the formulation of active learning strategies which query for multiple points.
Error driven methods for incremental support vector learning with multiple



Active Support Vector Learning with Statistical Queries 101

points are described in [9]. In [9] a chunk of p new points having a fixed
ratio of correctly classified and misclassified points are used to update the
current SV set. However, no guideline is provided for choosing the above
ratio. Another major limitation of all the above strategies is that they are
essentially greedy methods where the selection of a new point is influenced
only by the current hypothesis (separating hyperplane) available. The greedy
margin based methods are weak because focusing purely on the boundary
points produces a kind of non-robustness, with the algorithm never asking
itself whether a large number of examples far from the current boundary
do in fact have the correct implied labels. In the above setup, learning may
be severely hampered in two situations: a “bad” example is queried which
drastically worsens the current hypothesis, and the current hypothesis itself
is far from the optimal hypothesis (e.g., in the initial phase of learning). As a
result, the examples queried are less likely to be the actual support vectors.

The present article describes an active support vector learning algorithm
which is a probabilistic generalization of purely margin based methods. The
methodology is motivated by the model of learning from statistical queries
[6] which captures the natural notion of learning algorithms that construct
a hypothesis based on statistical properties of large samples rather than the
idiosyncrasies of a particular example. A similar probabilistic active learning
strategy is presented in [14]. The present algorithm involves estimating the
likelihood that a new example belongs to the actual support vector set and
selecting a set of p new points according to the above likelihood, which are
then used along with the current SVs to obtain the new SVs. The likelihood
of an example being a SV is estimated using a combination of two factors:
the margin of the particular example with respect to the current hyperplane,
and the degree of confidence that the current set of SVs provides the actual
SVs. The degree of confidence is quantified by a measure which is based on
the local properties of each of the current support vectors and is computed
using the nearest neighbor estimates.

The aforesaid strategy for active support vector learning has several advan-
tages. It allows for querying multiple instances and hence is computationally
more efficient than those that are querying for a single example at a time.
It not only queries for the error points or points close to the separating hy-
perplane but also a number of other points which are far from the separating
hyperplane and also correctly classified ones. Thus, even if a current hypothe-
sis is erroneous there is scope for it being corrected owing to the later points. If
only error points were selected the hypothesis might actually become worse.
The ratio of selected points lying close to the separating hyperplane (and
misclassified points) to those far from the hyperplane is decided by the confi-
dence factor, which varies adaptively with iteration. If the current SV set is
close to the optimal one, the algorithm focuses only on the low margin points
and ignores the redundant points that lie far from the hyperplane. On the
other hand, if the confidence factor is low (say, in the initial learning phase)
it explores a higher number of interior points. Thus, the trade-off between
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efficiency and robustness of performance is adequately handled in this frame-
work. This results in a reduction in the total number of labeled points queried
by the algorithm, in addition to speed up in training; thereby making the
algorithm suitable for applications where labeled data is scarce.

Experiments are performed on four real life classification problems. The
size of the data ranges from 684 to 495, 141, dimension from 9 to 294. Our
algorithm is found to provide superior performance and faster convergence
compared to several related algorithms for incremental and active SV learning.

2 Support Vector Machine

Support vector machines are a general class of learning architecture inspired
from statistical learning theory that performs structural risk minimization on
a nested set structure of separating hyperplanes [17]. Given training data,
the SVM training algorithm obtains the optimal separating hyperplane in
terms of generalization error. Though SVMs may also be used for regression
and multiclass classification, in this article we concentrate only on two-class
classification problem.

Algorithm: Suppose we are given a set of examples (x1, y1), . . . , (xl, yl),x ∈
RN , yi ∈ {−1,+1}. We consider decision functions of the form sgn((w ·x)+b),
where (w · x) represents the inner product of w and x. We would like to find
a decision function fw,b with the properties

yi((w · xi) + b) ≥ 1, i = 1, . . . , l . (1)

In many practical situations, a separating hyperplane does not exist. To
allow for possibilities of violating (1), slack variables are introduced like

ξi ≥ 0, i = 1, . . . , l (2)

to get
yi((w · xi) + b) ≥ 1− ξi, i = 1, . . . , l . (3)

The support vector approach for minimizing the generalization error con-
sists of the following:

Minimize : Φ(w, ξ) = (w ·w) + C

l∑

i=1

ξi (4)

subject to the constraints (2) and (3).
It can be shown that minimizing the first term in (4), amounts to mini-

mizing a bound on the VC-dimension, and minimizing the second term corre-
sponds to minimizing the misclassification error [17]. The above minimization
problem can be posed as a constrained quadratic programming (QP) problem.
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The solution gives rise to a decision function of the form:

f(x) = sgn

[
l∑

i=1

yiαi(x · xi) + b

]

.

Only a small fraction of the αi coefficients are non-zero. The corresponding
pairs of xi entries are known as support vectors and they fully define the
decision function.

3 Probabilistic Active Support
Vector Learning Algorithm

In the context of support vector machines, the target of the learning algo-
rithm is to learn the set of support vectors. This is done by incrementally
training a SVM on a set of examples consisting of the previous SVs and a
new set of points. In the proposed algorithm, the new set of points, instead of
being randomly generated, is generated according to a probability Prχ(x,f(x)).
χ(x, f(x)) denotes the event that the example x is a SV. f(x) is the optimal
separating hyperplane. The methodology is motivated by the statistical query
model of learning [6], where the oracle instead of providing actual class la-
bels, provides an (approximate) answer to the statistical query “what is the
probability that an example belongs to a particular class?”.

We define the probability Prχ(x,f(x)) as follows. Let 〈w, b〉 be the current
separating hyperplane available to the learner.

Pχ(x,f(x)) = c if y(w · x + b) ≤ 1 (5)
= 1− c otherwise .

Here c is a confidence parameter which denotes how close the current hyper-
plane 〈w, b〉 is to the optimal one. y is the label of x.

The significance of Pχ(x,f(x)) is as follows: if c is high, which signifies that
the current hyperplane is close to the optimal one, points having margin value
less than unity are highly likely to be the actual SVs. Hence, the probability
Pχ(x,f(x)) returned to the corresponding query is set to a high value c. When
the value c is low, the probability of selecting a point lying within the margin
decreases, and a high probability value (1 − c) is then assigned to a point hav-
ing high margin. Let us now describe a method for estimating the confidence
factor c.

3.1 Estimating the Confidence Factor for a SV Set

Let the current set of support vectors be denoted by S = {s1, s2, . . . , sl}.
Also, consider a test set T = {x′

1,x
′
2, . . . ,x

′
m} and an integer k (say, k =

√
l).

For every si ∈ S compute the set of k nearest points in T . Among the k
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nearest neighbors let k+
i and k−

i denote the number of points having labels +1
and −1 respectively. The confidence factor c is then defined as

c =
2
lk

l∑

i=1

min(k+
i , k−

i ) . (6)

Note that the maximum value of the confidence factor c is unity when
k+

i = k−
i ∀i = 1, . . . , l, and the minimum value is zero when min(k+

i , k−
i ) = 0

∀i = 1, . . . , l. The first case implies that all the support vectors lie near the
class boundaries and the set S = {s1, s2, . . . , sl} is close to the actual support
vector set. The second case, on the other hand, denotes that the set S consists
only of interior points and is far from the actual support vector set. Thus, the
confidence factor c measures the degree of closeness of S to the actual support
vector set. The higher the value of c is, the closer is the current SV set to the
actual SV set.

3.2 Algorithm

The active support vector learning algorithm, which uses the probability
Prχ(x,f(x)), estimated above, is presented below.

Let A = {x1,x2, . . . ,xn} denote the entire training set used for SVM de-
sign. SV (B) denotes the set of support vectors of the set B obtained using the
methodology described in Sect. 2. St = {s1, s2, . . . , sl} is the support vector
set obtained after tth iteration, and 〈wt, bt〉 is the corresponding separating
hyperplane. Qt = {q1,q2, . . . ,qp} is the set of p points actively queried for
at step t. c is the confidence factor obtained using (6). The learning steps
involved are given below:

Initialize: Randomly select an initial starting set Q0 of p instances from
the training set A. Set t = 0 and S0 = SV (Q0). Let the parameters of the
corresponding hyperplane be 〈w0, b0〉.
While Stopping Criterion is not satisfied:

Qt = ∅.
While Cardinality(Qt) ≤ p:

Randomly select an instance x ∈ A.
Let y be the label of x.
If y(wt · x + b) ≤ 1:

Select x with probability c. Set Qt = Qt ∪ x.
Else:

Select x with probability 1− c. Set Qt = Qt ∪ x.
End If

End While
St = SV (St ∪Qt).
t = t + 1.

End While
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The set ST , where T is the iteration at which the algorithm terminates,
contains the final SV set.

Stopping Criterion: Among the p points actively queried at each step
t, let pnm points have margin greater than unity (y(wt ·x+ b) > 1). Learning
is stopped if the quantity c·pnm

p exceeds a threshold Th (say, = 0.9).
The stopping criterion may be interpreted as follows. A high value of the

quantity pnm

p implies that the query set contains a small number of points
with margin less than unity. No further gain can be thus achieved by the
learning process. The value of pnm may also be large when the value of c is
low in the initial phase of learning. However, if both c and pnm have high
values, the current SV set is close to the actual one (i.e., a good classifier
is obtained) and also the margin band is empty (i.e., the learning process is
saturated); hence, the learning may be terminated.

4 Experimental Results and Comparison

Organization of the experimental results is as follows. First, the characteristics
of the four datasets, used, are discussed briefly. Next, the performance of
the proposed algorithm in terms of generalization capability, training time
and some related quantities, is compared with two other incremental support
vector learning algorithms as well as the batch SVM. Linear SVMs are used
in all the cases. The effectiveness of the confidence factor c, used for active
querying, is then studied.

4.1 Data Sets

Six public domain datasets are used, two of which are large and three relatively
smaller. All the data sets have two overlapping classes. Their characteristics
are described below. The data sets are available in the UCI machine learning
and KDD repositories [1].

Wisconsin Cancer: The popular Wisconsin breast cancer data set contains
9 features, 684 instances and 2 classes.

Twonorm: This is an artificial data set, having dimension 20, 2 classes and
20,000 points. Each class is drawn from a multivariate normal distribution
with unit covariance matrix. Class 1 has mean (a, a, . . . , a) and class 2 has
mean (−a,−a, . . . ,−a). a = 2

20
1
2
.

Forest Cover Type: This is a GIS data set representing the forest covertype
of a region. There are 54 attributes out of which we select 10 numeric valued
attributes. The original data contains 581, 012 instances and 8 classes, out of
which only 495, 141 points, belonging to classes 1 and 2, are considered here.

Microsoft Web Data: There are 36818 examples with 294 binary attributes.
The task is to predict whether an user visits a particular site.
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Table 1. Comparison of performance of SVM design algorithms

Data Algorithm atest(%) D nquery tcpu (sec)
Mean SD

Cancer BatchSVM 96.32 0.22 − − 1291
IncrSVM 86.10 0.72 10.92 0.83 302
QuerySVM 96.21 0.27 9.91 0.52 262
StatQSVM 96.43 0.25 7.82 0.41 171
SMO 96.41 0.23 − − 91

Twonorm BatchSVM 97.46 0.72 − − 8.01 × 104

IncrSVM 92.01 1.10 12.70 0.24 770
QuerySVM 93.04 1.15 12.75 0.07 410
StatQSVM 96.01 1.52 12.01 0.02 390
SMO 97.02 0.81 − − 82

Covertype IncrSVM 57.90 0.74 − 0.04 4.70 × 104

QuerySVM 65.77 0.72 − 0.008 3.20 × 104

StatQSVM 74.83 0.77 − 0.004 2.01 × 104

SMO 74.22 0.41 − − 0.82 × 104

Microsoft IncrSVM 52.10 0.22 − 0.10 2.54 × 104

Web QuerySVM 52.77 0.78 − 0.04 1.97 × 104

StatQSVM 63.83 0.41 − 0.01 0.02 × 104

SMO 65.43 0.17 − − 0.22 × 104

4.2 Classification Accuracy and Training Time

The algorithm for active SV learning with statistical queries (StatQSVM) is
compared with two other techniques for incremental SV learning as well as the
actual batch SVM algorithm. Only for the Forest Covertype data set, batch
SVM could not be obtained due to its large size. The sequential minimal
optimization (SMO) algorithm [10] is also compared for all the data sets. The
following incremental algorithms are considered.

(i) Incremental SV learning with random chunk selection [11]. (Denoted by
IncrSVM in Table 1.)

(ii) SV learning by querying the point closest to the current separating hy-
perplane [3]. (Denoted by QuerySVM in Table 1.) This is also the “simple
margin” strategy in [16].

Comparison is made on the basis of the following quantities. Results are pre-
sented in Table 1.

1. Classification accuracy on test set (atest). The test set has size 10% of that
of the entire data set, and contains points which do not belong to the (90%)
training set. Means and standard deviations (SDs) over 10 independent
runs are reported.
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2. Closeness of the SV set: We measure closeness of the SV set (S̃), obtained
by an algorithm, with the corresponding actual one (S). These are mea-
sured by the distance D defined as follows [8]:

D =
1

nS̃

∑

x∈S̃

δ(x, S) +
1

nS

∑

y∈S

δ(y, S̃) + Dist(S̃, S) , (7)

where
δ(x, S) = min

y∈S
d(x, y), δ(y, S̃) = min

x∈S̃
d(x, y) ,

and Dist(S̃, S) = max{maxx∈S̃ δ(x, S),maxy∈S δ(y, S̃)}. nS̃ and nS are the
number of points in S̃ and S respectively. d(x, y) is the usual Euclidean dis-
tance between points x and y. The distance measure has been used for quan-
tifying the errors of set approximation algorithms [8], and is related to the ε
cover of a set.

3. Fraction of training samples queried (nquery) by the algorithms.
4. CPU time (tcpu) on a Sun UltraSparc 350MHz workstation.

It is observed from the results shown in Table 1 that all the three incremen-
tal learning algorithms require several order less training time as compared
to batch SVM design, while providing comparable classification accuracies.
Among them the proposed one achieves highest or second highest classifi-
cation score in least time and number of queries for all the data sets. The
superiority becomes more apparent for the Forest Covertype data set, where
it significantly outperforms both QuerySVM and IncrSVM. The QuerySVM
algorithm performs better than IncrSVM for Cancer, Twonorm and the Forest
Covertype data sets.

It can be seen from the values of nquery in Table 1, that the total num-
ber labeled points queried by StatQSVM is the least among all the methods
including QuerySVM. This is inspite of the fact that, StatQSVM needs the
label of the randomly chosen points even if they wind up not being used for
training, as opposed to QuerySVM, which just takes the point closest to the
hyperplane (and so does not require knowing its label until one decides to ac-
tually train on it). The overall reduction in nquery for StatQSVM is probably
achieved by its efficient handling of the exploration – exploitation trade-off in
active learning.

The SMO algorithm requires substantially less time compared to the in-
cremental ones. However, SMO is not suitable to applications where labeled
data is scarce. Also, SMO may be used along with the incremental algorithms
for further reduction in design time.

The nature of convergence of the classification accuracy on test set atest

is shown in Fig. 1 for all the data sets. It is be observed that the conver-
gence curve for the proposed algorithm dominates those of QuerySVM and
IncrSVM. Since the IncrSVM algorithm selects the chunks randomly, the cor-
responding curve is smooth and almost monotonic, although its convergence
rate is much slower compared to the other two algorithms. On the other hand,
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Fig. 1. Variation of atest (maximum, minimum and average over ten runs) with
CPU time for (a) Cancer, (b) Twonorm, (c) Forest covertype, (d) Microsoft web
data

the QuerySVM algorithm selects only the point closest to the current separat-
ing hyperplane and achieves a high classification accuracy in few iterations.
However, its convergence curve is oscillatory and the classification accuracy
falls significantly after certain iterations. This is expected as querying for
points close to the current separating hyperplane may often result in gain
in performance if the current hyperplane is close to the optimal one. While
querying for interior points reduces the risk of performance degradation, it
also achieves poor convergence rate. Our strategy for active support vector
learning with statistical queries selects a combination of low margin and in-
terior points, and hence maintains a fast convergence rate without oscillatory
performance degradation.

In a part of the experiment, the margin distribution of the samples was
studied as a measure of generalization performance of the SVM. The distrib-
ution in which a larger number of examples have high positive margin values
leads to a better generalization performance. It was observed that, although
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the proposed active learning algorithm terminated before all the actual SVs
were identified, the SVM obtained by it produced a better margin distribu-
tion than the batch SVM designed using the entire data set. This strengthens
the observation of [12] and [3] that active learning along with early stopping
improves the generalization performance.

4.3 Effectiveness of the Confidence Factor c

Figure 2 shows the variation of the confidence factor c for the SV sets with
distance D. It is observed that for all the data sets c is linearly correlated
with D. As the current SV set converges closer to the optimal one, the value
of D decreases and the value of confidence factor c increases. Hence, c is an
effective measure of the closeness of the SV set with the actual one.
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Fig. 2. Variation of confidence factor c and distance D for (a) Cancer, and (b)
Twonorm data



110 P. Mitra et al.

5 Conclusions and Discussion

A method for probabilistic active SVM learning is presented. Existing algo-
rithms for incremental SV learning either query for points close to the current
separating hyperplane or select random chunks consisting mostly of interior
points. Both these strategies represent extreme cases; the former one is fast
but unstable, while the later one is robust but slowly converging. The former
strategy is useful in the final phase of learning, while the later one is more
suitable in the initial phase. The proposed active learning algorithm uses an
adaptive confidence factor to handle the above trade-off. It more robust than
purely margin based methods and potentially faster than random chunk selec-
tion because it can, to some extent, avoid calculating margins for non-support
vector examples. The superiority of our algorithm is experimentally demon-
strated for some real life data sets in terms of both training time and number
of queries. The strength of the proposed StatQSVM algorithm lies in the re-
duction of the number of labeled points queried, rather than just speed up in
training. This makes it suitable for environments where labeled data is scarce.

The selection probability (Pχ, (5)), used for active learning, is a two level
function of the margin (y(w · x + b)) of a point x. Continuous functions of
margin of x may also be used. Also, the confidence factor c may be estimated
using a kernel based relative class likelihood for more general kernel structures.
Logistic framework and probabilistic methods [14] may also be employed for
estimating the confidence factor.
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