2nd Licence year June 8th, 2024

Communication Networks 09:45-11:15 Amphi A,B

Resit Session Exam

Name:	Group:
-------	--------

Consider the network represented in the figure, where the switch connects three work stations WS1, WS2 and WS3 via an RJ45 network of 10 Mbits/s and connected to an internet server via a Router R using an ADSL connection of 1 Mbits/s. On the RJ45 network, the level 2 HDLC protocol on ABM mode defined by ISO is used in LLC sub-layer. Manchester coding is used on physical Layer.

On ADSL network, PSK modulation is used with 0° for 10, 90° for 00, 180° for 01 and 270° for 11.

We assume the following hypotheses:

- Size of the information field of the HDLC frame = 256 Bytes
- Address of WS1 is 1, WS2 is 2, WS3 is 3 and R is 4.
- Control, address and FCS fields size = 8 bits
- Station A sends 3 frames numbered from 0 to 7 (n=8) and puts itself on hold.
- The used generator polynomial is "01010001"
- The frame processing time at the station level is neglected.
- During the transfer, 3^{rd} , 10^{th} and 11^{th} frames are poorly received by R.

We want to transfer a 3 KBytes file from station WS1 to the Router R :

1.	Calculate the number of frames composing this file.										
				• •							
2.	Complete the file transmission scenario on the following diagram:	4.5	jр	\mathbf{ts}							

2. Complete the file transmission scenario on the following diagram:

. (Calculate 													1.5	_
. (Calculate transfer time of a supervision frame.											1	 pt		
(Calculate	transfe	er time	of an u	unnum	pered f	rame.							1	pt
(Calculate	the tot	tal trar	nsfer tir	me of t	 his file	and de	duce ti	he effec	ctive th	nrough	out.		3 	$egin{array}{c} \dots \ \end{array}$
(Give the	-		re of tl		_			-					4. 5	_
		decima												 the cor	
			***************************************			***************************************				***************************************	***************************************				
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							***************************************					
	Γhe same			_		8" is s€	ent from	n R to	the in	ternet	server.	, draw,	on the		ving pts
_			***************************************			-				***************************************	***************************************				
										-					

 $Good\ Luck$ 

## Correction

1. Calculate the number of frames composing this file.

Number of frames =  $\frac{File\ size}{Frame\ size} = \frac{3\times1024\ KB}{256KB} = 12$  frames

0.5 pt

.....

2. Complete the file transmission scenario on the following diagram:

4.5 pts



3. Calculate transfer time of an information frame.

1.5 pts

- Information frame structure = Flag + Address + Control + Information + FCS + Flag
- Information Frame size = 1 + 1 + 1 + 256 + 1 + 1 = 261 bytes  $\Rightarrow$  Transfer time =  $\frac{(261 \times 8)}{(10 \times 1024 \times 1024)} = 199.12 \times 10^{-6} s$

4. Calculate transfer time of a supervision frame.

1 pts

- Supervision frame structure = Flag + Address + Control + FCS + Flag
- Supervision Frame size = 1 + 1 + 1 + 1 + 1 = 5 bytes  $\Rightarrow$  Transfer time =  $\frac{(5 \times 8)}{(10 \times 1024 \times 1024)} = 3.81 \times 10^{-6} s$

......

5. Calculate transfer time of an unnumbered frame.

1 pts

- Unnumbered frame structure = Flag + Address + Control + FCS + Flag
- Unnumbered Frame size = 1 + 1 + 1 + 1 + 1 = 5 bytes  $\Rightarrow$  Transfer time =  $\frac{(5\times8)}{(10\times1024\times1024)}$  =  $3.81\times10^{-6}s$

.....

6. Calculate the total transfer time of this file and deduce the effective throughput.

3 pts

- Number of sent I Frames =  $16 \Rightarrow \text{size} = 16 \times 261 = 4176$
- Number of sent S Frames =  $06 \Rightarrow$  size =  $06 \times 5 = 30$  bytes
- Number of sent U Frames =  $04 \Rightarrow$ size =  $04 \times 5 = 20$  bytes
- Total sent data =  $4176 + 30 + 20 = 4226 \Rightarrow$  Transfer time =  $\frac{(4226 \times 8)}{(10 \times 1024 \times 1024)} = 3.22 \times 10^{-3} s$
- 7. Give the binary structure of the first supervision frame sent by R.

4.5 pts

- First S frame:  $SREJ-02,PF=1 \Rightarrow Control field = 10111010, WS1 address = 00000001$
- $M(x) = 0000000110111010 = M(x) = x^8 + x^7 + x^5 + x^4 + x^3 + x$
- Generator polynomial is "01010001" =  $G(x) = x^6 + x^4 + 1$ , r=6

$$-M(x)x^{r} = x^{16} + x^{15} + x^{13} + x^{12} + x^{11} + x^{9}; \ \frac{M(x)x^{r}}{G(x)} = x^{10} + x^{9} + x^{8} + x^{5} + x^{4} + x^{3} + x; \ R(x) = x^{4} + x^{3} + x = 00011010$$

 $\textbf{-} \Rightarrow \text{Frame} = 011111110 \ 000000001 \ 10111010 \ 00011010 \ 011111110$ 

8. The hexadecimal string "1EC8" is sent from WS1 to R, draw, on the following diagram, the corresponding signal : **2pts** 



9. The same hexadecimal string "1EC8" is sent from R to the internet server, draw, on the following diagram, the corresponding signal:

2 pts



2nd Licence year June 8th, 2024

Communication Networks 09:45-11:15 Amphi A,B,1

## **Resit Session Exam**

Name:	Group:
-------	--------

Consider the network represented in the figure, where the switch connects three work stations WS1, WS2 and WS3 via an RJ45 network of 100 Mbits/s and connected to an internet server via a Router R using an ADSL connection of 2 Mbits/s. On the RJ45 network, the level 2 HDLC protocol on ABM mode defined by ISO is used in LLC sub-layer. Differential Manchester coding is used on physical Layer.

On ADSL network, PSK modulation is used with 0° for 11, 90° for  $10, 180^{\circ}$  for 00 and  $270^{\circ}$  for 01.

We assume the following hypotheses:

- Size of the information field of the HDLC frame = 256 Bytes
- Address of WS1 is 1, WS2 is 2, WS3 is 3 and R is 4.
- Control, address and FCS fields size = 8 bits
- Station A sends 3 frames numbered from 0 to 7 (n=8) and puts itself on hold.
- The used generator polynomial is "10000011"
- The frame processing time at the station level is neglected.
- During the transfer,  $3^{rd}$ ,  $10^{th}$  and  $11^{th}$  frames are poorly received by R.



We want to transfer a 3 KBytes file from station WS1 to the Router R :

1.	Calculate the number of frames composing this file.										
				•							
2.	Complete the file transmission scenario on the following diagram:	4.5	j pt	s							

2. Complete the file transmission scenario on the following diagram:



	Calculate													1.5	_
. C	Calculate transfer time of a supervision frame.											1	 pt		
C	Calculate	transfe	er time	of an u	ınnuml	bered f	rame.							1	pt
C	Calculate the total transfer time of this file and deduce the effective throughput.														$egin{array}{c} \dots \ \end{array}$
G					• • • • • •				••••						
Т		lecimal												  the cor	
						основниковниковниковниковниковниковниковни					000000000000000000000000000000000000000				
_											-				
						***************************************					-				
	The same iagram, t			_		l is se	ent from	n R to	the in	ternet	server,	draw,	on the		ring <b>pts</b>

 $Good\ Luck$ 

## Correction

1. Calculate the number of frames composing this file.

Number of frames =  $\frac{File\ size}{Frame\ size} = \frac{3\times1024\ KB}{256KB} = 12$  frames

0.5 pt

.....

2. Complete the file transmission scenario on the following diagram :

4.5 pts



3. Calculate transfer time of an information frame.

1.5 pts

- Information frame structure = Flag + Address + Control + Information + FCS + Flag
- Information Frame size = 1 + 1 + 1 + 256 + 1 + 1 = 261 bytes  $\Rightarrow$  Transfer time =  $\frac{(261 \times 8)}{(100 \times 1024 \times 1024)} = 19.91 \times 10^{-6} s$

4. Calculate transfer time of a supervision frame.

1 pts

- Supervision frame structure = Flag + Address + Control + FCS + Flag
- Supervision Frame size = 1 + 1 + 1 + 1 + 1 + 1 = 5 bytes  $\Rightarrow$  Transfer time =  $\frac{(5\times8)}{(100\times1024\times1024)}$  =  $0.38\times10^{-6}s$

......

5. Calculate transfer time of an unnumbered frame.

 $1 \mathrm{~pts}$ 

- Unnumbered frame structure = Flag + Address + Control + FCS + Flag
- Unnumbered Frame size = 1 + 1 + 1 + 1 + 1 = 5 bytes  $\Rightarrow$  Transfer time =  $\frac{(5\times8)}{(100\times1024\times1024)}$  =  $0.38\times10^{-6}s$

6. Calculate the total transfer time of this file and deduce the effective throughput.

3 pts

- Number of sent I Frames =  $16 \Rightarrow \text{size} = 16 \times 261 = 4176$
- Number of sent S Frames =  $06 \Rightarrow$  size =  $06 \times 5 = 30$  bytes
- Number of sent U Frames =  $04 \Rightarrow$ size =  $04 \times 5 = 20$  bytes
- Total sent data =  $4176 + 30 + 20 = 4226 \Rightarrow$  Transfer time =  $\frac{(4226 \times 8)}{(100 \times 1024 \times 1024)} = 0.32 \times 10^{-3} s$
- 7. Give the binary structure of the first supervision frame sent by R.

4.5 pts

- First S frame: SREJ-02,PF=1  $\Rightarrow$  Control field = 10111010, WS1 address = 00000001
- $M(x) = 0000000110111010 = M(x) = x^8 + x^7 + x^5 + x^4 + x^3 + x$

- Generator polynomial is "10000011" =  $G(x)=x^8+x+1,$ r=8
- $-M(x)x^r = x^{16} + x^{15} + x^{13} + x^{12} + x^{11} + x^9 \; ; \\ \frac{M(x)x^r}{G(x)} = x^8 + x^7 + x^5 + x^4 + x^3 \; ; \\ R(x) = x^7 + x^6 + x^3 = 11001000 \\ \Rightarrow \textbf{Frame} = \textbf{01111110} \; \textbf{00000001} \; \textbf{10111010} \; \textbf{11001000} \; \textbf{01111110}$
- 8. The hexadecimal string "A02C" is sent from WS1 to R, draw, on the following diagram, the corresponding signal: 2pts



9. The same hexadecimal string "A02C" is sent from R to the internet server, draw, on the following diagram, the corresponding signal: 2 pts

